
Fall 2018 Math 566:12 1/3

Shortest path

Source: Chapter 2.2 (Bills), Chapter 7 of Combinatorial Optimization (Korte)

Practical problem: Drive between 2 points, at every intersection you can choose, where to turn (but no U turn).
What is the best way to go?

Shortest path
Input: Graph G = (V,E), costs c : E → R, and s, t ∈ V .
Output: s-t-path P , where

∑
e∈P c(e) is minimized.

1: Find the shortest (lowest cost) s-t-paths in the following graphs

s

t

1 2

6 3

9 7

13

8

22

10

14

18

s

t

1 2

6 3

−9 7

13

−8

22

10

14

18

Notice the graph on the right contains a cycle in the left upper corner with negative cost. Perhaps one would
just want to keep cycling there.

The cost c is called conservative if there is no circuit of negative total cost.

Bellman’s principle: Let s, . . . , v, w be the least cost s-w-path of length k. The s, . . . , v is the least cost
s-v-path of length k − 1.

2: Prove Bellman’s principle.

Solution: By contradiction. If there is a lower cost path to v, we could find a lower
cost path to w.

Notice: This gives a recursion for computing the shortest path.

Dijkstra’s algorithm
c : E → R+, computes shortest s-t-path from s to ALL other vertices t ∈ V .

1. `(s) := 0; ∀v 6= s `(v) = +∞

2. R = ∅

3. while R 6= V

4. find v ∈ V −R with minimum `(v)

5. R := R ∪ {v}

6. ∀vw ∈ E, `(w) = min{`(w), `(v) + c(v, w)}

R . . . vertices with final number; ` . . . upper bound on the cost;
The running time is O(n2) easily or O(m + n log n) when implemented using Fibonacci heaps.

cbna by Bernard Lidický

https://en.wikipedia.org/wiki/Fibonacci_heap
https://creativecommons.org/licenses/by-nc-sa/4.0/

Fall 2018 Math 566:12 2/3

3: Run Dijkstra’s algorithm on the following graph

s

t

x y

z w

1 2

7 3

13 22 13

R `(s) `(x) `(y) `(z) `(w) `(t)

∅ 0 ∞ ∞ ∞ ∞ ∞
{s} 0 1 ∞ 13 ∞ ∞
{s, x} 0 1 3 13 ∞ 23
{s, x, y} 0 1 3 13 16 23
{s, x, y, z} 0 1 3 13 16 20
{s, x, y, z, w} 0 1 3 13 16 19
{s, x, y, z, w, t} 0 1 3 13 16 19

Notice how `(t) is slowly decreasing and getting closer and closer to the correct answer.

4: How do we find the shortest s-v-path?

Solution: Remember previous vertex. In step 6. of the algorithm, remember why the
value was changed. So called predecessor. Recall Bellman’s principle. In step 6. of the
algorithm, when we decrease `(w), always remember which v caused it. The last such
v is called predecessor and by using predecessors, one can reconstruct the path.

5: Why is the algorithm correct? (show that if v ∈ R, then `(v) = cost for s-v-path.)

Solution: Suppose for contradiction the algorithm produces an incorrect result. Then
some vertex w can be reached from s by a path s, . . . , v, w shorter than `(w). It follows
that the predecessor v of w in the path is also closer than `(v). By considering the
number of vertices along such a path, we arrive at a contradiction.

6: Why doesn’t Dijkstra’s algorithm work for negative costs?
(How about an example?)

Solution: The assumption that we can fix the cost of the lowest visited so far is not
true.

s
5

x

−4

y

1
t

3 R `(s) `(x) `(y) `(t)

∅ 0 ∞ ∞ ∞
{s} 0 5 ∞ 3
{s, t} 0 5 4 3
{s, t, y} 0 0 4 3
{s, t, y, x} 0 0 −4 3

Costs of shortest paths: s-t: 2; s-x: 0, s-y: 1. Notice that the algorithm incorrectly
assumed that shortest path to t uses edge of cost 3 and then it traversed edge xy there
and back.

cbna by Bernard Lidický

https://creativecommons.org/licenses/by-nc-sa/4.0/

Fall 2018 Math 566:12 3/3

We fixing mistakes of Dijkstra’s algorithms by 1) repeatedly check for possible improvements for all `(v) where
v ∈ V and 2) working with directed graph (prevents traversing an edge with negative weight back and forth).

Moore-Bellman-Ford Algorithm
c : E → R, computes shortest s-t-path in a directed graph G = (V,E) from s to ALL other vertices t ∈ V OR
finds a cycle of negative cost. Assume |V | = n.

1. `(s) := 0; ∀v 6= s `(v) = +∞

2. repeat n− 1 times: //computes the costs

3. ∀vw ∈ E,

4. if `(w) > `(v) + c(v, w)

5. `(w) := `(v) + c(v, w); p(w) = v

6. ∀vw ∈ E, //check for a negative cycle

7. if `(w) > `(v) + c(v, w) then found negative cycle

Note: ` gives the least cost, while p gives the previous vertex / predecesor on the shortest path from s.

7: Run the Dijkstra’s algorithm and Moore-Bellman-Ford algorithm on the following graph and notice the
result at w.

s
5 y

2

x

-3

z

4

w

2
3

Solution: Dijkstra’s algorithm will result in cost 7 to w using path s, x, z, w while
the shortest path s, y, z, w has cost 5. We run the algorithm with edge ordering
yw, zw, xz, yz, sy, sx.

R `(s) `(x) `(y) `(z) `(w)

∅ 0 ∞ ∞ ∞ ∞
{s} 0 2 5 ∞ ∞
{s, x} 0 2 5 4 ∞
{s, x, z} 0 2 5 4 7
{s, x, z, y} 0 2 5 2 7
{s, x, z, y, w} 0 2 5 2 7

`(s), p(s) `(x) `(y) `(z) `(w)

0,− ∞,− ∞,− ∞,− ∞,−
0,− 2, s 5, s ∞,− ∞,−
0,− 2, s 5, s 2, y 9, y
0,− 2, s 5, s 2, y 5, z

8: What is the time complexity of the algorithm if G has m edges and n vertices?

Solution: O(nm).

9: ”How does the algorithm detect a negative cycle? Why does the algorithm work?

Solution: The longest shortest s-t path can have up to n− 1 edges. So the algorithm
examines all of them. TODO: How about an example with a cycle and let students
try it?

cbna by Bernard Lidický

https://creativecommons.org/licenses/by-nc-sa/4.0/

